flowering

Identification of Earliness Per Se Flowering Time Locus in Spring Wheat through a Genome-Wide Association Study

Identification of earliness per se (Eps) flowering time loci in spring wheat are troublesome due to confounding effects of vernalization and photoperiod responses. The Wheat Association Mapping Initiative panel of 287 elite lines was assessed to …

Velocity of temperature and flowering time in wheat – assisting breeders to keep pace with climate change

By accelerating crop development, warming climates may result in mismatches between key sensitive growth stages and extreme climate events, with severe consequences for crop yield and food security. Using recent estimates of gene responses to …

Breeding for the future: How to adapt to frost, drought and heat impacts in Australian wheat

While extreme climatic events (frost, heat and drought) can already severely limit wheat production, the expected future increase in extreme temperatures and rainfall variability will further challenge improvement in crop productivity. In addition, …

Heat stress effects on grain sorghum productivity – biology and modelling

Heat stress shock has been known to cause sterility in sorghum and the anticipated increasing frequency of heat shock events with maximum temperature trends implies increasing risk. Here we summarise our research on specific varietal attributes …

Gene-based prediction of heading time to target real-time and future climate adaptation in wheat

Spring wheat production systems in Australia require fine-tuning of heading time in order to maximise the efficient use of resources (radiation, water, fertiliser) across the season, while minimising the risk of crop failure due to frost, heat and …

Predicting heading date and frost impact in wheat across Australia

Spring radiant frosts occurring when wheat is in reproductive developmental stages can result in catastrophic yield lost for producers. In wheat, heading time is the main determinant to minimize frost risks and to adapt new frost-tolerant cultivars …

Frost trends and their estimated impact on yield in the Australian wheatbelt

Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on …

Breeding for the future – avoiding climate extremes and maximising yield of spring wheat in water-limited environments

Predicting heading time of Australian wheat using effects of VRN1 and Ppd-D1

Flowering time is a main determinant of wheat adaptation to diverse environments and is influenced by three groups of genes, earliness per se (EPS), VRN and PPD. The gene-based models, used known genes to predict wheat phenotype, would be robust for …

Using gene-based information to adapt wheat flowering time to avoid heat, frost and drought stresses in current and future climates

Varying the timing of reproductive stages of growth relative to climatic stresses is a useful adaptation to maintain yields. In future climates, the expectation that heat, frost and drought stresses may change in their timing means requires that …

Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments

Heading time is a major determinant of the adaptation of wheat to different environments, and is critical in minimizing risks of frost, heat, and drought on reproductive development. Given that major developmental genes are known in wheat, a …

Association genetics for earliness components and QTL-based ecophysiological predictions of heading date provide tools to optimize heading date through breeding

Wheat flowering

Genetics and physiology of wheat development to flowering: tools to breed for improved adaptation and yield potential

Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?

Extreme climate, especially temperature, can severely reduce wheat yield. As global warming has already begun to increase mean temperature and the occurrence of extreme temperatures, it has become urgent to accelerate the 5–20 year process of …

Frost and heat limits to the wheat flowering ‘window’ in present and future climates

To pollinate and set grain, Australian wheat needs to flower in spring in a ‘window’ when risks of frost or heat stress are low. Other stresses (e.g. early and late drought conditions) are also important in affecting the window, but here the focus is …